Locating disease genes using Bayesian variable selection with the Haseman-Elston method
نویسندگان
چکیده
منابع مشابه
Haseman-Elston regression in ascertained samples: importance of dependent variable and mean correction factor selection.
OBJECTIVE One of the first tools for performing linkage analysis, Haseman-Elston regression (HE), has been successfully used to identify linkages to several disease traits. A recent explosion in extensions of HE leaves one faced with the task of choosing a flavor of HE best suited for a given situation. This paper puts this dilemma into perspective and proposes a modification to HE for highly a...
متن کاملRelationship between LD Score and Haseman-Elston Regression
Estimating SNP-heritability from summary statistics using LD Score regression provides a convenient alternative to standard variance component models, because LD Score regression is computationally very fast and does not require individual genotype data. However, the mathematical relationship between variance component methods and LD Score regression is not clear; in particular, it is not known...
متن کاملBayesian variable selection for disease classification using gene expression data
MOTIVATION An important application of gene expression microarray data is the classification of samples into categories. Accurate classification depends upon the method used to identify the most relevant genes. Owing to the large number of genes and relatively small sample size, the selection process can be unstable. Modification of existing methods for achieving better analysis of microarray d...
متن کاملEstimating heritability of complex traits from genome-wide association studies using IBS-based Haseman–Elston regression
Exploring heritability of complex traits is a central focus of statistical genetics. Among various previously proposed methods to estimate heritability, variance component methods are advantageous when estimating heritability using markers. Due to the high-dimensional nature of data obtained from genome-wide association studies (GWAS) in which genetic architecture is often unknown, the most app...
متن کاملNonparametric Regression using Bayesian Variable Selection
This paper estimates an additive model semiparametrically, while automatically selecting the significant independent variables and the app~opriatc power transformation of the dependent variable. The nonlinear variables arc modeled as regression splincs, with significant knots selected fiom a large number of candidate knots. The estimation is made robust by modeling the errors as a mixture of no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genetics
سال: 2003
ISSN: 1471-2156
DOI: 10.1186/1471-2156-4-s1-s69